
1

Novicell Workshop:
DevOps and Docker

April 2016

Henrik Bærbak Christensen
Associate Professor
Computer Science

University of Aarhus

Henrik Bærbak Christensen 2

The speaker...

 Associated Professor since 2003
– Dept. of computer science / University of Aarhus
– Interests: Software architecture & Teaching
– Leader for SWK part-time education at AU

 Industrial experience
– Architect and developer for a product suite of

meteorological systems for Danish airports.
– Collaborations with Danish companies: Danfoss,

Systematic A/S, B&O, Jyske Bank, TDC, Mjølner,
KMD, and many others.

– Recently software intensive projects: Net4Care,
EcoSense, CloudArch

2

… have SW in Production

CS@AU Henrik Bærbak Christensen 3

EcoSense
Karibu

Characteristics

CS@AU Henrik Bærbak Christensen 4

But cannot survive:
power cuts on all

machines

 Designed for 24/7/365 operations
– No service windows at all

• Last week we extended disk space from 12 TB -> 15 TB
without service interruption

• All security updates and reboots – without service
interruption

• All services can be updated and restarted – without service
interruption [MQ is only exception!]

– Services to be added at run-time
• New dataformats, new apps, new producers – without

service interruption

– Performant and Scalable
• ~65 kB/s – and about 1% CPU load
• More power? Add machines!

3

Agenda: Take Away Points

 DevOps:
– Agility in development as well as in production
– Full stack development: Teams do the full stack

 MicroServices:
– Decentral data and governance, products not projects
– Design for failure

 Docker:
– Infrastructure as code
– Lightweight virtualization: containers ship anywhere

 Software Architecture!
– Technology fix will not help if architecture is wrong

Henrik Bærbak Christensen 5

Literature

Henrik Bærbak Christensen 6

4

DevOps

The Problem and a Solution

Henrik Bærbak Christensen 7

DevOps ?

 I am a software developer! I develop software,
and then someone else puts it into production
– Makes sense for ‘Word’ and ‘Excel’

 However, ‘software’ has changed

Henrik Bærbak Christensen 8

5

Software Anno 2016

 Software no longer comes on a CD. It is already
live on the internet

Henrik Bærbak Christensen 9

Software Anno 2016

 I buy the capacity I need, not the machinery to
execute on…

 And why develop services, if they are
already there?

Henrik Bærbak Christensen 10

6

Software Anno 2016

 New Years eve:
– 60 bookings per second

 Multiple data centers
– 1000s of servers

 Millions of connected devices

 Services
– Fare estimation
– Tracking car movement
– Select nearest car
– Fare splits
– Supply positioning

• Heatmaps
– Fraud detection
– Dynamic pricing
– Backend processing

• Optimization

 All made using open-
source software!

Henrik Bærbak Christensen 11

Example: Uber

But How to Develop?

 From 2015 Master of IT thesis
– A typical development team includes UI

designers/developers, backend developers, and
database experts. […] and many other companies
split the development process into several
components, such as UI, backend, database and
mobile applications.

 Why does this make
sense?

Henrik Bærbak Christensen 12

UI designers

Application Server developers

Database designers

7

Bottlenecks

 Crossing the boundaries of environments for the
full development-testing-deployment cycle is
costly…
– Reconfigurations
– Setup
– Changed architecture
– Changed HW

 Even worse
– Different people
– Someone else’s

problem

Henrik Bærbak Christensen 13

Development Environment

Staging Environment

Production Environment

DevOps

 Charles Anderson: Docker

Henrik Bærbak Christensen 14

8

So

 The problems

– Boundaries between people

• Is it the fault of the UI guys, or the DB guys

– Boundaries between environments

• But it works on my machine ???

Henrik Bærbak Christensen 15

Virtualization, cloud
computing, automated

configuration
management

DevOps Movement

Henrik Bærbak Christensen 16

http://martinfowler.com/bliki/DevOpsCulture.html

9

DevOps

 Full stack developer
– Small teams do everything: db design, code

development, UI, config, testing, deploy, monitor,
production

 Uber development
– 08-12 I develop it
– 12-16 I deploy it
– 16-08 I monitor it

• (pager at bed table!)

Henrik Bærbak Christensen 17

UI

Application Server

Database

Team
 1

Team
 2

Infrastructure as Code

 The new type of code on the block

Henrik Bærbak Christensen 18

Infrastructure
Code

10

MicroServices

Henrik Bærbak Christensen 19

Micro Services

 The agony of being an old man…
– Same ideas, new packaging, pops up every 10 years

• Modular programming, object-orientation, component-based,
service-oriented,… and now micro services

– All the same idea, dating to David Parnas
• Information hiding in modular programming

– Gamma et al.
• program to an interface
• favor object composition
• encapsulate what varies

Henrik Bærbak Christensen 20

11

What varies?

 The idea is the same, only the packing and
wiring varies
– Modula 2 module = compilation unit, static link
– Class = compilation unit, static link
– Components = deployment/static unit, static link
– SOA = deployment/run-time unit, dynamically linked
– MicroService = deployment/run-time unit, dynamically

linked

Henrik Bærbak Christensen 21

What is New?

 The real new concept here, IMO, is the self-
containedness and autonomy of a MS

Henrik Bærbak Christensen 22

http://martinfowler.com/articles/microservices.html

12

MS = Business Capability

Henrik Bærbak Christensen 23

Ownership: you build it,
you run it!

Products, not projects

Decentralizing…

 Governance
– Choice of platform and technology by the team

• Pick the right tool for the job

 Data management
– MS = Products own their data

 Communication
– Typical

• Network
• RESTish

– Lightweight
– Extensible
– Fault tolerant

Henrik Bærbak Christensen 24

13

Design for Failure !

 Get that book!
 Safe failure modes

– Failing services
– Slow responses
– Cascading failures

 Redundancy
 Horizontal scaling

Henrik Bærbak Christensen 25

Containers and Docker

Henrik Bærbak Christensen 26

14

The Problem Again

 Crossing boundaries, that is, moving code

Henrik Bærbak Christensen 27

Source: Torben Haagh, StiboSystems

Was Solved in 1960’ies

Henrik Bærbak Christensen 28

15

Docker = Container

Henrik Bærbak Christensen 29

Light-Weight virtualization?

 Moving the virtualization boundary

Henrik Bærbak Christensen 30

Traditional VVMs Docker VVM

What consequences do Docker then
dictate on the VMs it hosts?

16

Docker Engine

 Core concepts
– Image Deployment Unit – a Virtual Machine

• Naming: ownername/imagename:tag
– Container Executing process(es) in an Image

• Naming: ‘trusty_thar’ or give it your own name

 Lifecycle classic for building your image
– container = instantiate(image)

• docker run –d –name c1 baerbak/dockerdemo:v1
– modify container

• Install software, change files, add stuff, …
– commit container → image2

• docker commit c1 baerbak/dockerdemo:v2
Henrik Bærbak Christensen 31

Tech Glimpse

 Onion file system: Copy-on-Write
– Every operation basically creates a new file layer

• Changing ‘hans.txt’ in layer N creates a (modified) copy of
‘hans.txt’ in layer N+1

 Base images = ‘prebaked file system’
– All layers up-till N forms an Image

 I.e. henrikbaerbak/cloudarch:base_v2
– Ubuntu 14.04 LTS server base image
– Java, Ant, Ivy, Git, … are all layered on top

Henrik Bærbak Christensen 32

17

Docker Engine

 But but – infrastructure code ???
 Lifecycle scripted for building your image
 Dockerfile

– Infrastructure code at
the image level

– Defines the contents of
the image

– docker build –t (name)
• creates the image from

local ‘Dockerfile’

Henrik Bærbak Christensen 33

Docker Hub

 Similar to Maven Repo

 Repo of open-source
images
– docker pull (name)

 Free hosting
– Register and
– docker push (name)

Henrik Bærbak Christensen 34

18

Example

 Exam exercise
– Integrate with a ‘Einstein Quote’ service using REST

 Step 1: develop… and make Dockerfile
 Step 2: build an image
 Step 3: push to docker hub

 Step 4: Now all students can pull and
start it
– docker run -d -p 6745:6745 henrikbaerbak/quote albert
– Browse: localhost:6745/albert

Henrik Bærbak Christensen 35

Why not try yourself?

MicroServices

 Many systems depend upon other services
– Ex: LAMP stack:

• Linux/Apache Server/MySQL/PHP

 Docker Compose
– Infrastrucure code for multi-container deployments

Henrik Bærbak Christensen 36

19

Docker in Action

From my
Cloud Computing Course

SkyCave

 Massive Multiplayer Online (MMO)
 Social Networking
 Domain: ‘Colossal Cave’ – reimagined

 Characteristics
– Subscription-based
– Single Sign-on
– NoSQL
– REST services

Henrik Bærbak Christensen 38

20

Deployment Viewpoint

 The central nodes in SkyCave / Three Tier + MS

CS@AU Henrik Bærbak Christensen 39

MongoDB

Governance

 The central nodes in SkyCave / Three Tier + MS

CS@AU Henrik Bærbak Christensen 40

MongoDB

Team A

Team B

Student teams on Cmd
and Daemon

21

MicroService: Subscription

 The Subscription service is a web site, backed
up by a MongoDB database, which allows:
– Creating a new subscriber
– Authenticating through REST call

Henrik Bærbak Christensen 41

Thus, to run, a MongoDB
container must be live first!

Example: Docker Compose

 Multiple compose files
– Layering

• Base: Core stuff
for staging environment

• Prod: Additional stuff
for real production running

 For staging
– docker-compose up

• Read only docker-compose.yml

 For production
– docker-compose –f docker-compose.yml –f docker-compose.prod.yml up -d

Henrik Bærbak Christensen 42

22

Example

Henrik Bærbak Christensen 43

Deployment Viewpoint

 A full staging environment

CS@AU Henrik Bærbak Christensen 44

23

Full Staging

 Adding a SkyCave server with own database,
staged subscription server with own database

Henrik Bærbak Christensen 45

Four server Docker-compose

Henrik Bærbak Christensen 46

Juliet’s server, depends
on ‘cavedb’ and

‘regservice’

Subscription server,
depends on ‘mongodb’

24

Discussion

 Benefits:
– Infrastructure as code

• Fast, reproducable execution of deployments
• Excellent documentation of deployment view

 Liabilities:
– Docker is a moving target

• E15: Linking was the central composition tool; now
deprecated!

• Documentation erosion!
– Layered file system: Take care with security!

• No, you cannot delete the credential file again…

Henrik Bærbak Christensen 47

… And software architecture

25

Discussion

 MicroServices and Docker are patterns and
technology, they do not by themselves solve
the deep architectural issues of ‘hard to maintain
monoliths’
– Loose coupling and High cohesion are challenging no

matter what technology you use!
– Software Architecture =

• Making the right decisions on
– Splitting the behaviour in the proper units
– Providing adequate connections between the units
– Controling quality attributes

» Especially availability, modifiability, performance in MS

Henrik Bærbak Christensen 49

Discussion

 If a MS architecture
– Have bad boundaries between units
– Require all units’ behaviour and the networks

between them to operation correctly
 … you still have a Monolith that is very hard to

maintain and grow…

Henrik Bærbak Christensen 50

26

Discussion

 Design for failure, means
– Introduce proper techniques to handle cascading

failures at the integration points
• Detect failure

– Consider how graceful degradation works
• How to continue operation once the failure occurs?

 Example:
– Player wants to log into SkyCave, but the subscription

server is not responding
• Reject login? (Loss of interest, bad reputation)
• Accept limited login? (”Karl, I know him, let him in…”)

Henrik Bærbak Christensen 51

Summary

27

Agenda: Take Away Points

 DevOps:
– Agility in development as well as in production
– Full stack development: Teams do the full stack

 MicroServices:
– Decentral data and governance, products not projects
– Design for failure

 Docker:
– Infrastructure as code
– Lightweight virtualization: containers ship anywhere

 Software Architecture!
– Technology fix will not help if architecture is wrong

Henrik Bærbak Christensen 53

Thanks…

Questions?

